Ergodicity and Local Limits for Stochastic Local and Nonlocal p-Laplace Equations

نویسندگان

  • Benjamin Gess
  • Jonas M. Tölle
چکیده

Ergodicity for local and nonlocal stochastic singular p-Laplace equations is proven, without restriction on the spatial dimension and for all p ∈ [1, 2). This generalizes previous results from [Gess, Tölle; JMPA, 2014], [Liu, Tölle; ECP, 2011], [Liu; JEE, 2009]. In particular, the results include the multivalued case of the stochastic (nonlocal) total variation flow, which solves an open problem raised in [Barbu, Da Prato, Röckner; SIAM, 2009]. Moreover, under appropriate rescaling, the convergence of the unique invariant measure for the nonlocal stochastic p-Laplace equation to the unique invariant measure of the local stochastic p-Laplace equation is proven.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On nonlocal quasilinear equations and their local limits

We introduce a new class of quasilinear nonlocal operators and study equations involving these operators. The operators are degenerate elliptic and may have arbitrary growth in the gradient. Included are new nonlocal versions of p-Laplace, ∞-Laplace, mean curvature of graph, and even strongly degenerate operators. Our main results are non-trivial comparison, uniqueness, and existence results fo...

متن کامل

Yang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order

This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Nonlinear Buckling of Circular Nano Plates on Elastic Foundation

The following article investigates nonlinear symmetric buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account Eringen nonlocal elasticity theory, principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained ...

متن کامل

Mechanical Response of a Piezoelectrically Sandwiched Nano-Beam Based on the Non-Local Theory

This article deals with the mechanical analysis of a fixed-fixed nano-beam based on nonlocal elasticity theory. The nano-beam is sandwiched with two piezoelectric layers through it’s upper and lower sides. The electromechanical coupled equations governing the problem are derived based nonlocal theory considering to Euler-Bernoulli beam assumptions and based on the nonlocal piezoelectricity acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016